8 research outputs found

    Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques

    Get PDF
    Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined with supervised pattern recognition techniques have not been previously explored. We present results of using leaf morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach, Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect. Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM show excellent classification results for genus Camellia with DAN2's accuracy of 97.92% and 91.11% for training and testing data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia species

    Studi Komparasi Terhadap Kapabilitas Generalisasi Dari Jaringan Saraf Tiruan Berbasis Incremental Projection Learning

    Full text link
    One of the essences of supervised learning in neural network is generalization capability. It is an ability to give an accurate result for data that are not learned in learning process. One of supervised learning method that theoretically guarantees the optimal generalization capability is incremental projection learning. This paper will describe an experimental evaluation of generalization capability of the incremental projection learning in neural networks%2C called projection generalizing neural networks%2C for solving function approximation problem. Then%2C Make comparison with other general used neural networks%2C i.e. back propagation networks and radial basis function networks. Base on our experiment%2C projection generalizing neural networks doesn%5C%27t always give better generalization capability than the two other neural networks. It gives better generalization capability when the number of learning data is small enough or the noise variance of learning data is large enough. Otherwise%2C it does not always give better generalization capability. Even though%2C In case the number of learning data is big enough and the noise variance of learning data is small enough%2C projection generalizing neural networks gives worse generalization capability than back propagation network

    Data analysis for electronic nose systems

    No full text
    corecore